
1

T

Ve r s io n 3 .0

R e le a s e N o t e s

1 In t r o d u
 t io n

T version 3.0 is a new implementation of the T language and system. T3.0 is more

eÆ
ient and more
orre
t than previous versions. T3.0 was implemented by Norman

Adams, David Kranz, Ri
hard Kelsey, James Philbin, and Jonathan Rees.

orbit, the new optimizing
ompiler, is the most signi�
ant di�eren
e between version

3 and previous versions. orbit generates mu
h better
ode than t
, the old
ompiler.

It is also more
orre
t than t
; at the time of release there were no known
ompiler

bugs. The
ompiler is now built into the system; there is no seperate
ompiler. t
 is

no longer available.

The system as a whole is mu
h faster. This is in part due to orbit and in part due to

the fa
t that major portions of the system have been rewritten. The i/o subsystem, in

parti
ular, is mu
h faster.

These release notes super
ede the manual where appli
able. A new version of the manual

will be available at some future date.

Bug reports should be sent to t3-bugs.yale.edu.

2 N o t a t io n a l C o n v e n t io n s

Throughout this do
ument the following
onventions are used:

f . . . g Curly bra
es group together whatever they en
lose.

[. . . ℄ Square bra
kets indi
ate that what they en
lose is optional.

�

Bra
es or bra
kets followed by a star, e.g. f . . . g

�

, indi
ate zero or more o

uren
es

of the en
losed item.

+

Bra
es or bra
kets followed by a plus sign, e.g. [. . . ℄

+

, indi
ate one or more

o

uren
es of the en
losed item.

2 T3.0 Release Notes

j A verti
al bar is used to separate alternative in a bra
ed or bra
keted group, e.g.

fthing

1

j . . . j thing

n

g.

=) is read as \evaluates to" and is used to indi
ate the values of various expressions

in the language, e.g. (+ 1 2) =) 3.

� is read as \is equivalent to" and is used to indi
ate that one expression \is equivalent

to" another, i.e that they have the same meaning. For example, (+ 1 2) � (+ 2

1).

�! is read as \has
hanged to" and is used to spe
ify things that have
hanged from

T2 to T3.

2.1 Margin Notes

Margin notes in this do
ument give information about the type of di�eren
e between

T3.0 and previous versions of T. There are seven
ategories of di�eren
e:

Fixed indi
ates errors or bugs in previous releases that have been �xed.

Extended indi
ates that some additional fun
tionality has been added to the feature

thus marked.

Added indi
ates some additional fun
tionality that has been added to the language.

Experimental indi
ates new features of the language whi
h are in
luded on an exper-

imental basis. Experimental features may be removed from the language at some

future release.

Changing indi
ates a
hange in fun
tionality. The previous fun
tionality is supported

in the
urrent release but will be removed in some future release. Any
ode whi
h

relies on aspe
ts of the language whi
h are
hanging should be modi�ed as soon

as possible.

Changed indi
ates an in
ompatibility between T3.0 and previous versions of T. Code

whi
h uses a
hanged feature will either not work in T3.0 or will not work in

previous versions of T.

Removed indi
ates fun
tionality that has been removed from the
urrent release, and

is no longer supported. Any
ode whi
h relies on removed features will no longer

work.

T3.0 Release Notes 3

3 L a m b d a

lambda-bindings no longer shadow syntax table entries in the standard
ompiler. The�xed

standard-
ompiler and orbit, the new optimizing
ompiler, now have the same

evaluation semanti
s. This is
onsistent with the manual (4

th

edition). In T2 t
, the

old
ompiler,
omplied with the manual but the standard
ompiler did not. Thus,

(let ((set list) (x 5)) (set x 8)) =) 8 not (5 8)

However, this doesn't mean that the lambda-binding has no e�e
t, but rather that the

binding is not re
ognized as su
h when the name appears in the
ar of a form. Thus,

(let ((set list) (x 5)) ((blo
k set) x 8)) =) (5 8)

This is not a �nal de
ision. This was the easiest semanti
s to implement, and it is

onsistent with the do
umentation. In the future lambda bindings may shadow syntax.

4 A r g u m e n t E va lu a t i o n

The evaluation order of arguments in a pro
edure
all is unde�ned. This is not a

language
hange. In
ode
ompiled by both the standard-
ompiler and t
 the

evaluation order of arguments in a
ombination is left to right. orbit produ
es
ode in

whi
h the evaluation order of arguments is unde�ned and not ne
essarily left to right.

Parti
ularly insidious bugs have resulted from let forms whose
lauses
ontain order

dependent side e�e
ts. Be
ause t
 and the standard
ompiler evaluated the
lauses

of let forms of this sort in sequential order they produ
ed the expe
ted value. orbit

will usually not produ
e the expe
ted value. let* should be used to ensure sequential

evaluation order.

5 M u lt ip le Va lu e s

Version 3.0 of T supports multiple return values. This makes pro
edure
all and return experimental

uniform, in the sense that a pro
edure
an be invoked with zero or more values and
an

return zero or more values.

(return fvalueg

�

) pro
edure

=) fvalueg

�

return returns its arguments as the value(s) of the
urrent expression. In order to a

ess

4 T3.0 Release Notes

the value(s) of a return expression the value(s) must be bound to identi�ers using either

re
eive or re
eive-values.

For example,

(lambda () (return 1 2 3)) =) 1 2 3

where \=) 1 2 3" denotes evaluates to the three values 1, 2, and 3.

Like pro
edures,
ontinuations have
ertain expa
tations about the number of arguments

(values) that will be delivered to them. It is an error if more or fewer values are delivered

than expe
ted. There are only a small number of ways to
reate
ontinuations, thus one

only needs to understand these
ases:

1. Impli
it
ontinuations, e.g. those re
eiving an argument of a
ombination or the

predi
ate of an IF, expe
t exa
tly one value, thus

(list (values 1) 2) => (1 2)

but

(list (values) 2) is an error

(list (values 1 2) 2) is an error

2. In a blo
k (begin), a
ontinuation whi
h pro
eeds to exe
ute subsequent
ommands

(e.g. the
ontinuation to the
all to FOO in (BLOCK (FOO) 2)) a

epts an arbitrary

number of values, and dis
ards all of them.

3. re
eive expressions (and the subprimitive re
eive-values
reates a
ontinuation whi
h

a

epts whatever values are delivered to it, and passes them to a pro
edure; and

of
ourse it is an error if this pro
edure is passed the wrong number of values.

return when invoked with no arguments returns to the
alling pro
edure with no value.

Thus (return) will return to its
aller with no value. It is an error to return no value

to a value-requiring position. For example,

(list 'a (return)) =) error

The idiom (return) is useful for pro
edures that return an unde�ned value and many

of the system pro
edures whose value(s) is unde�ned now return no value. However, the

pro
edure unde�ned-value may provide a more informative error message.

(re
eive-values re
eiver sender) pro
edure

=) value(s) of re
eiver

T3.0 Release Notes 5

re
eive-values returns the value of applying re
eiver, a pro
edure of n arguments, to the

values returned by sender. sender is a thunk , a pro
edure of no arguments, whi
h

returns n values.

For example,

(re
eive-values (lambda (x y) (list x y))

(lambda () (return 1 2))) =) (1 2)

(re
eive (fidentg

�

) expression fbodyg

�

) syntax

=) value of body

In a re
eive form the expression is evaluated in the
urrent environment and the values

returned by the expression are bound to the
orresponding identi�ers. body, whi
h

should be a lambda body, i.e. a sequen
e of one or more expressions, is evaluated in the

extended environment and the value(s) of the last expression in body is returned.

The expression

(re
eive (a b
) (return 1 2 3)

(list a b
))

=) (1 2 3)

is equivalent to

(re
eive-values (lambda (a b
) (list a b
))

(lambda () (return 1 2 3)))

=) (1 2 3)

Other forms have been extended in T3.0 to allow multiple return values:

(
at
h identi�er fbodyg

�

) syntax extended

=) value of body

The identi�er is bound to the
ontinuation of the
at
h form, whi
h is now an n-ary

pro
edure. This means that
at
h forms
an ruturn multiple values. The
ontinuation

an be invoked only during the dynami
 extent of the
at
h form (see se
tion 21). In

T2 the
ontinuation was a pro
edure of one argument. For example,

(
at
h x (list 1 (x 2 3) 4)) =) 2 3

(ret fvalueg

�

) pro
edure extended

=) fvalueg

�

Returns zero or more values as the value of the
urrent read-eval-print loop.

6 T3.0 Release Notes

Note: Multiple values are implemented eÆ
iently. It may be more eÆ
ient

to use multiple values than to pass
ontinuations.

6 S id e E � e
 t s

6.1 LSET

The value of the lset spe
ial form is unde�ned, and it is an error to use an lset form in
hanging

a value requiring position. In version 3.0 lset will
ontinue to return a value.

6.2 SET

The value of the set spe
ial form is unde�ned, and it is an error to use a set form in a
hanging

value requiring position. For example,

(set (p x y . . .) val)

is
on
eptually equivalent

(lambda ()

((setter p) x y . . . val)

(return))

where (return) invokes the
alling
ontinuation with no arguments. For more informa-

tion on return see se
tion 5. In version 3.0 set will
ontinue to return the value being

assigned to the lo
ation, but an error will be signalled in the future.

6.3 MODIFY

The value of the modify spe
ial form is unde�ned, and it is an error to use a modify form
hanging

in a value requiring position. In version 3.0 modify will
ontinue to return a value.

7 C a n o n i
 a l B o o le a n Va lu e s

There is now a read syntax for
anoni
al true and false: #F reads as the
anoni
al falseadded

obje
t, and #T reads as the
anoni
al true obje
t.

T3.0 Release Notes 7

(true? '#t) =) true

(false? (
ar '(#f #t))) =) true

(list #f #t) is not de�ned, and is probably a syntax error, whereas (list '#f '#t)

evaluates to (() #T).

7.1 False and the Empty List

In T3.0 the
anoni
al false value #F is not ne
essarily the same obje
t as the empty
hanging

list, (). nil is bound to #F. For example,

(
ond ((
dr '(a)) 1)

(else 2))

may return 2 in a future release.

In T3.0 false and the empty list will
ontinue to be the same obje
t, for
ompatibility

with previous versions, but this will
hange in a future release. As long as #F and ()

evaluate to the same obje
t null? and not will
ontinue to be isomorphi
; however, null?

should be used to test for the empty list, and not should be used to test for false.

It is now an error to take the
ar or
dr of the empty list, (). Again, for
ompatibility
hanging

with previous versions, in T3.0 the
ar and
dr of () will
ontinue to evaluate to (), but

an error will be signalled in a future release.

It is an error to use () in an evaluated position. This error
urrently generates a warning
hanging

and treats () as '(), i.e. as if the empty list were self evaluating. An error will be signalled

in the future. Use '() for empty lists, nil or '#F for false values.

8 O b je
 t s

�xed

The obje
t system has been made more eÆ
ient. join now works on pro
edures and

obje
ts
reated by the obje
t spe
ial form. It does not yet work on stru
tures or primitive

obje
ts su
h as numbers and symbols.

8.1 Synonym

The synonym spe
ial form has been removed. removed

8 T3.0 Release Notes

9 L o
 a le

The lo
ale spe
ial form has been removed from the language; however, make-lo
ale andremoved

friends are still available.

We are working on a module system whi
h will eventually subsume the fun
tionality of

lo
ale.

10 D e
 la r e

A new spe
ial form de
lare has been added. Its syntax has not yet been released, butadded

users should be aware that it is a reserved word.

11 U n d e � n e d Va lu e s

Most pro
edures and spe
ial forms that have unde�ned values now return either no value
hanging

or an expli
it unde�ned value. See page 66 of the manual (4

th

edition). For example,

ond if no
lause is sele
ted returns an unde�ned value.

12 S t r e a m s an d P o r t s

In T3.0 \streams" have be renamed to \ports". This was done for
ompatibility with
hanging

s
heme and to avoid in
ompatibility with the use of the term stream in Stru
ture and

Interpretation of Computer Programs by Abelson and Sussman.

In a

ordan
e with this naming
onvention the following pro
edures have been renamed:

stream? �! port?

input-stream? �! input-port?

output-stream? �! output-port?

intera
tive-stream? �! intera
tive-port?

stream-read-table �! port-read-table

stream-�lename �! port-name

make-output-width-stream �! make-output-width-port

make-broad
ast-stream �! make-broad
ast-port

T3.0 Release Notes 9

13 W e a k S e t s

\Populations" have been renamed to \weak-sets". This
hange was made in the belief
hanging

that \weak-set" is a more intuitive name then \population". The old names are still

supported, but they will be removed in a future release.

make-population �! make-weak-set

population? �! weak-set?

add-to-population �! add-to-weak-set!

remove-from-population �! remove-from-weak-set!

population->list �! weak-set->list

walk-population �! walk-weak-set

In addition, two new pro
edures on weak-sets have been added.

(weak-set-member? obje
t weak-set) pro
edure added

=) boolean

weak-set-member? returns true if obje
t is a member of weak-set; otherwise, it returns

false.

(weak-set-empty? weak-set) pro
edure added

=) boolean

weak-set-empty? returns true if weak-set is empty; otherwise, it returns false.

14 S y n t a x

de�ne-ma
ro has been removed from the language. Use de�ne-syntax, de�ne-lo
al-syntax, removed

and let-syntax instead.

The syntax of spe
ial forms is
he
ked more thoroughly than in previous releases. Some
hanged

expressions that did not
ause syntax errors in previous versions of T will
ause errors

in T3.0. For example,

(lambda ()) =) syntax error

In previous versions of T this invalid expression would return the value (). In T3.0 it

generates an error.

10 T3.0 Release Notes

t
-ma
ro-de�nition-env has been eliminated. orbit evaluates syntax-des
riptors in the
hanged

env-for-syntax-de�nition asso
iated with the syntax table from whi
h the des
riptor was

obtained, e.g. (t
-syntax-table).

14.1 Read Syntax

Read syntax pro
edures now take three arguments instead of two. The �rst two argu-
hanged

ments are as before; the third is the read table from whi
h the pro
edure was fet
hed

(i.e. the one that was originally passed to read-obje
t). Read ma
ros whi
h re
ursively

invoke the reader will want to pass that read table as the se
ond argument to read-obje
t.

Note: The ha
k in T2.8, in whi
h (set (read-table-entry . . .)

pro
) would
onvert pro
 from a two-argument pro
edure to a

three-argument pro
edure whi
h ignores its third argument, has been

removed.

14.1.1 Chara
ter Read Syntax

The #[Char . . . ℄ read syntax for
hara
ters has been
hanged to #[As
ii . . . ℄.
hanging

#[Char . . . ℄ �! #[As
ii . . . ℄

14.2 Syntax Des
riptors

The evaluation semanti
s have been extended to allow the evaluation of forms whoseextended

ar's are syntax des
riptors. Su
h a form is interpreted just as if it were a form whose

ar was a symbol whose syntax table entry was the syntax des
riptor. For example,

(define-lo
al-syntax (foo x)

`(,(syntax-table-entry standard-syntax-table 'lambda) () ,x))

((foo 5)) =) 5

This feature allows
ontrol over binding time for reserved words. For example, a syntax

des
riptor su
h as foo, above,
an be sure that its expansion will be treated as an

expression that evaluates to a
losure, regardless of what the syntax table entry for the

symbol lambda is when the expansion is evaluated or otherwise analyzed.

T3.0 Release Notes 11

15 Q u a s iq u o t e

ba
kquote has been renamed to quasiquote, and the ba
kquote
hara
ter, � , now reads
hanged

as quasiquote. The semanti
s of nested quasiquote have
hanged to
onform with the

Revised

3

Report on the Algorithmi
 Language S
heme. This
hange should not
ause

you problems. If you need a more thorough explanation of this
hange,
onta
t the

implementors.

quasiquote now works on ve
tors. Thus, extended

`#(1 2 ,(+ 1 2)) =) #(1 2 3)

16 S t r u
 t u r e s

Stru
tures
an now be de�ned with methods. extended

(de�ne-stru
ture-type typename f
omponentsg

+

fmethodsg

�

) syntax

=) stype

typename and
omponents are handled as before. methods is an optional list of method

lauses. For example,

(define-stru
ture-type employee

name

age

salary

(((human? self) t)

((print self stream)

(format stream "#fEmployee (~a) ~ag"

(obje
t-hash self)

(employee-name self)))))

The methods in the methods
lauses
annot referen
e the
omponents dire
tly. They

must use the standard stru
ture a

essors. For example, in the print method above the

name
omponent of the employee stru
ture must be a

essed as (employee-name self)

not as name.

Stru
tures
annot yet be joined to other obje
ts.

12 T3.0 Release Notes

17 M is
 e l la n e o u s

17.1 Numbers

(rational? obj) pro
edureadded

=) boolean

rational? returns true if obj is an integer or ratio; otherwise, it returns false.

(trun
atenumber) pro
edureadded

=) boolean

trun
ate returns the integer of maximal absolute value not larger than the absolute value

of number with the same sign as number. trun
ate trun
ates its argument toward zero.

17.2 Global Variab les

The *. . . *
onvention for global variables has been
hanged. *. . . * now indi
ates a
hanging

global, mutable variable, i.e. bound by lset. The *'s have been removed from global

onstants. Thus the following name
hanges have been made:

standard-read-table �! standard-read-table

vanilla-read-table �! vanilla-read-table

standard-syntax-table �! standard-syntax-table

eof �! eof

repl-wont-print �! repl-wont-print

*number-of-
har-
odes* �! number-of-
har-
odes

nothing-read �! nothing-read

standard-env �! standard-env

t-implementation-env �! t-implementation-env

*s
rat
h-env* �! user-env

*t
-env* �! orbit-env

t-version-number �! t-version-number

17.3 Mis
ellaneous Name Changes

The following names have been
hanged in T3.0:
hanging

T3.0 Release Notes 13

div �! quotient

div2 �! quotient&remainder

min-�xnum �! most-negative-�xnum

max-�xnum �! most-positive-�xnum

fxrem �! fx-rem

om�le �!
ompile-�le

17.4 Command Line

The global variable *
ommand-line* has been repla
ed by
ommand-line whi
h is a nullary
hanged

pro
edure that returns the
ommand line that was used to invoke the system. The value

returned by
ommand-line is a list of strings. Thus,

*
ommand-line* � (
ommand-line)

17.5 Mutable Handlers

The unreleased feature of T2 that allowed handlers for stru
tures to be mutated no
hanged

longer exists. Any
ode using handle-stype, get-method, set-method, et
. will no longer

work, but join now works eÆ
iently; see se
tion 8.

17.6 Prop erty Lists

In T3.0 symbols no longer have property lists. Tables, see 19, provide a superset of the
hanged

fun
tionality of property lists and do not involve global state as do property lists.

17.7 Symbol Tables

Symbol tables as de�ned in T2 have been removed from the language. They have been
hanged

repla
ed by a generalized hash table fa
ility; see se
tion 19. The following pro
edures

are now defun
t:

make-symbol

the-symbol-table

intern

really-intern

interned

interned?

walk-symbol-table

14 T3.0 Release Notes

17.8 Any and Every

any, any?, any
dr, any
dr?, every, every?, every
dr, every
dr? now work as advertised in�xed

the manual (4

th

edition).

18 O t h e r C h a n g e s

(enfor
e predi
ate value) pro
edureadded

=) value

enfor
e returns value whi
h must answer true to predi
ate. enfor
e is used to ensure that

value is of type predi
ate. If enfor
e signals an error and enters a breakpoint, then a new

value
an be returned using ret. For example,

> (let ((a (enfor
e fixnum? 'a))) (+ a 1))

** Error: (ENFORCE FIXNUM? A) failed in (anonymous)

>> (ret 1)

2

>

(generate-symbolpre�x) pro
edure�xed

=) symbol

generate-symbol now ensures that the symbol returned is unique, in the sense that it

was not previously interned , during the
urrent session. Note, however, that symbols

generated using generate-symbol whi
h are written to a �le during one session and then

read during another session are not guaranteed to be unique.

^ has been removed.
hanged

repla
es **.
hanged

++ has been removed.
hanged

19 Ta b le s

T3.0
ontains generalized hash tables. A table asso
iates a key with a value. make-experimental

hash-table is the most general way to make a hash table. In addition, the most
ommon

types of tables have been prede�ned.

T3.0 Release Notes 15

Note: Tables should be used in pla
e of property lists.

(make-hash-table type? hash
omparator g
? id) pro
edure

=) table

make-hash-table
reates a table whi
h asso
iates keys to values. Any obje
t may be a

key or a value.

type? | is a predi
ate. All keys in the table must answer true to the predi
ate type?.

hash | is a pro
edure from keys to �xnums whi
h is used to hash the table entries.

omparator | is an equality predi
ate on keys.

g
? | is a boolean value whi
h spe
i�es whether the hash pro
edure is dependent on

the memory lo
ation(s) o

upied by the obje
t, i.e. whether or not the table must

be rehashed after a garbage
olle
tion.

id | is an identi�er used by the print method of the table.

(hash-table?obje
t) predi
ate

=) boolean

hash-table returns true if the obje
t is a hash table.

(table-entrytable key) settable

=) obje
t

table-entry returns the obje
t asso
iated with the key in the table if there is an entry for

key, otherwise returns false.

(walk-table pro
 table) pro
edure

=) unde�ned

walk-table invokes pro
edure, a pro
edure of two arguments, on ea
h key, value asso
ia-

tion in the table. Note that it is an error to perform any operations on the table while

walking it.

The following
ommon table types have been prede�ned as follows:

16 T3.0 Release Notes

(make-table . id) pro
edure

=) table

make-table
reates a table in whi
h any obje
t
an be a key and eqv? is used as the

equality predi
ate on keys.

(table? obje
t) pro
edure

=) boolean

table? returns true if the obje
t is an eq? table.

(make-string-table . id) pro
edure

=) table

make-string-table
reates a table in whi
h the keys must be strings and string-equal? is

used as the equality predi
ate on keys.

(string-table? obje
t) pro
edure

=) boolean

string-table? returns true if the obje
t is a string-table.

(make-symbol-table . id) pro
edure

=) symbol-table

make-symbol-table
reates a table in whi
h the keys must be symbols and eq? is used as

the equality predi
ate on keys.

(symbol-table? obje
t) pro
edure

=) boolean

symbol-table? returns true if the obje
t is a symbol-table.

20 R a n d o m In t e g e r s

(make-randomseed) pro
edureexperimental

T3.0 Release Notes 17

=) thunk

make-random takes a seed whi
h is a �xnum and returns a thunk . The thunk returns

a new pseudo-random integer , x, in the range most-negative-�xnum <= x <= most-

positive-�xnum ea
h time it is invoked.

21
a l l -w i t h -
 u r r e n t -
 o n t in u a t io n

(
all-with-
urrent-
ontinuationpro
) pro
edure experimental

=) value-of-pro

The pro
edure
all-with-
urrent-
ontinuation pa
kages up the
urrent
ontinuation as an

\es
ape pro
edure" and passes it as an argument to pro
edure. pro
edure must be a

pro
edure of one argument. The es
ape pro
edure is an n-ary pro
edure, whi
h if later

invoked with zero or more arguments, will ignore whatever
ontinuation is in e�e
t at

that later time and will instead pass the arguments to whatever
ontinuation was in

e�e
t at the time the es
ape pro
edure was
reated.

The es
ape pro
edure
reated by
all-with-
urrent-
ontinuation has unlimited extent just

like any other pro
edure. It may be stored in variables or data stru
tures and may be

alled as many times as desired. For a more thorough explanation
onsult the Revised

3

Report on the Algorithmi
 Language S
heme.

22 In p u t an d O u t p u t

(maybe-read-
harport) pro
edure experimental

=)
hara
ter or false

maybe-read-
har when invoked on a port will return the next
hara
ter if one is available;

otherwise, it will return immediately with a value of false.

(
har-ready?port) pro
edure experimental

=) boolean

har-ready? returns true if a
hara
ter is available for input; otherwise, it returns false.

18 T3.0 Release Notes

23 S
h em e

s
heme is an embedded language in T3. For more information on S
heme see theadded

Revised

3

Report on the Algorithmi
 Language S
heme. There are two ways to invoke

the S
heme interpreter:

(s
heme-breakpoint) pro
edure

=) unde�ned

s
heme-breakpoint enters a S
heme read-eval-print-loop in the S
heme environment. This

is similar to the T pro
edure breakpoint.

(s
heme-reset) pro
edure

=) unde�ned

s
heme-reset enters a top level S
heme read-eval-print-loop in the S
heme environment.

This is similar to doing reset in the standard-env, with the ex
eption that the read-eval-

print-loop is an evaluator for S
heme.

24 T h e In i t ia l L o
 a le s

When the T system starts up the lo
ale stru
ture looks as follows:extended

<root>

/ | \

/ | \

/ | \

/ | \

/ | \

t-implementation-env standard-env s
heme-env

/ | \

/ | \

/ | \

user-env orbit-env s
heme-internal-env

T3.0 Release Notes 19

<root> The <root> lo
ale is the
on
eptual root of the lo
ale tree. It does not a
tually

exist. The <root> lo
ale is empty, it
ontains no variable bindings.

t-implementation-env The t-implementation-env is the environment whi
h
ontains

the system internals.

standard-env The standard-env is the environment de�ned by the T manual.

user-env The user-env is the default environment for the read-eval-print-loop on system

startup.

orbit-env The orbit-env is the environment whi
h
ontains the internals of the orbit

ompiler.

s
heme-internal-env The s
heme-internal-env
ontains the system internals for the

S
heme environment.

s
heme-env The s
heme-env is the environment de�ned by Revised

3

Report on the Al-

gorithmi
 Language S
heme.

25 Fo r e ig n P r o
 e d u r e C a l l s

The interfa
e between T3 and the lo
al operating system is the de�ne-foreign spe
ial

form:

(de�ne-foreign T-name (foreign-name parameters

+

) return-type) syntax

=) unde�ned

20 T3.0 Release Notes

de�ne-foreign de�nes a foreign pro
edure, i.e. a T pro
edure whi
h will
all a pro
edure

de�ned by the operating system or in another language.

T-name is the name of the T pro
edure being de�ned.

foreign-name is the name of the foreign pro
edure to whi
h the T-name
orresponds.

parameters spe
i�es the representation of the parameters to the foreign pro
edure or

fun
tion.

return-type indi
ates the representation of the value returned by the foreign pro
edure.

parameter �! (parameter-type foreign-type [parameter-name℄)

parameter-type �! f in | out | in/out | var | ignore g

foreign-type �! f rep/integer |

rep/integer-8-s |

rep/integer-8-u |

rep/integer-16-s |

rep/integer-16-u |

rep/value |

rep/extend |

rep/extend-pointer |

rep/string |

rep/string-pointer g

parameter-name �! symbol used for identifi
ation

return-type �! Aegis: f foreign-type | ignore | rep/address g

Unix: f foreign-type | ignore g

For example, on the Apollo a pro
edure to do blo
k reads from a stream would be

de�ned as follows:

(define-foreign aegis-read

(stream $get buf (in rep/integer-16-u stream-id)

(in rep/string bufptr)

(in rep/integer buflen)

(ignore rep/integer retptr)

(out rep/integer retlen)

(ignore rep/extend seek-key)

(out rep/integer status))

ignore)

T3.0 Release Notes 21

The following
ode will use aegis-read to read in a string from standard input:

(let ((stream 0)

(buf (make-string 128)))

(re
eive (len status) (aegis-read stream buf 128 nil nil nil nil)

(
ond ((= 0 status)

(set (string-length buf) len)

len)

(error ...))))

On a Unix ma
hine a similar pro
edure would be de�ned as,

(define-foreign unix-read-extend (read (in rep/integer)

(in rep/string)

(in rep/integer))

rep/integer)

To read a string from standard input on Unix the T
ode would look something like:

22 T3.0 Release Notes

(let ((buf (make-string 128)))

(re
eive (len status) (unix-read 0 buf 128)

(
ond ((> 0 status)

(set (string-length buf) len)

len)

(error ...))))

25.1 Foreign Typ e Sp e
i�
ation

The foreign-type tells the
ompiler how to interpret a T data type in order to pass it to

the foreign
all. The general
ategories of Pas
al data types are numeri
, string, re
ord,

enumerated, set of.

Pas
al Type T3 Type Foreign Type Spe

Numeri

integer8 �xnum rep/integer-8-s

binteger �xnum rep/integer-8-u

integer16 �xnum rep/integer-16-s

pinteger �xnum rep/integer-16-u

integer �xnum rep/integer

linteger �xnum rep/integer

real unimplemented

double
onum rep/extend

String

string string rep/string

string text rep/extend

univ pointer string rep/string-pointer

univ pointer text rep/extend-pointer

Re
ord

re
ord extend rep/extend

Mis
ellaneous

har
har rep/
har

boolean boolean rep/integer-8-s

Beware that if a T string is being used as an out parameter the o�set �eld of the string

must be 0 (the string must never have been
hdr!'ed).

Re
ord stru
tures are represented by byte-ve
tors of the appropriate size.

25.2 Pas
al (Apollo) Enumerated Typ es

Pas
al enumerated types are de�ned using the de�ne-enumerated spe
ial form:

T3.0 Release Notes 23

(de�ne-enumerated type-name felementg

�

) syntax

=) unde�ned

where type-name is just for identi�
ation, and the elements are the enumerated types.

For example,

(define-enumerated ios $
reate mode t

ios $no pre exist mode

ios $preserve mode

ios $re
reate mode

ios $trun
ate mode

ios $make ba
kup mode

ios $lo
 name only mode

)

The foreign pro
edure is
alled with the enumerated type name just as in Pas
al.

25.3 Pas
al Sets (Apollo)

The Pas
al type set-of is de�ned using the de�ne-set-of spe
ial form:

(de�ne-set-of type-name felementg

�

) syntax

=) unde�ned

where, again, type-name is just for identi�
ation, and the elements are the names of the

set members. For example,

24 T3.0 Release Notes

(define-set-of ios $put get opts t

ios $
ond opt

ios $preview opt

ios $partial re
ord opt

ios $no re
 bndry opt

)

25.4 Returned Values and Out Param eters

For languages whi
h have output parameters, e.g. Pas
al, multiple values are returned.

The �rst value is the return-value of the foreign pro
edure, unless it is of return-type

ignore, followed by the out parameters. Thus a
all to the T pro
edure aegis-read,

de�ned above, would return two values: retlen and status. For a Pas
al pro
edure the

return spe
 will always be ignore. The argument to a foreign pro
edure should usually

be of type ignore if it is an out parameter to the foreign pro
edure that is bigger than a

longword. Also, the value of any out parameters whi
h are not needed
an be spe
i�ed

as ignore.

Pas
al fun
tions whi
h return addresses must have return-type of type rep/address. If

this value is passed to another foreign
all it should be with rep/integer.

de�ne-foreign does not allo
ate storage for out parameters. This means that you must

allo
ate your own obje
t and pass it to the foreign pro
edure even if it is only an out

parameter. If it is an out parameter whi
h is other than an integer then its foreign-type

should be ignore and the variable passed in should be used to referen
e the parameter.

