
1

T

Ve r s io n 3 .0

R e le a s e N o t e s

1 In t r o d u t io n

T version 3.0 is a new implementation of the T language and system. T3.0 is more

eÆient and more orret than previous versions. T3.0 was implemented by Norman

Adams, David Kranz, Rihard Kelsey, James Philbin, and Jonathan Rees.

orbit, the new optimizing ompiler, is the most signi�ant di�erene between version

3 and previous versions. orbit generates muh better ode than t, the old ompiler.

It is also more orret than t; at the time of release there were no known ompiler

bugs. The ompiler is now built into the system; there is no seperate ompiler. t is

no longer available.

The system as a whole is muh faster. This is in part due to orbit and in part due to

the fat that major portions of the system have been rewritten. The i/o subsystem, in

partiular, is muh faster.

These release notes superede the manual where appliable. A new version of the manual

will be available at some future date.

Bug reports should be sent to t3-bugs.yale.edu.

2 N o t a t io n a l C o n v e n t io n s

Throughout this doument the following onventions are used:

f . . . g Curly braes group together whatever they enlose.

[. . . ℄ Square brakets indiate that what they enlose is optional.

�

Braes or brakets followed by a star, e.g. f . . . g

�

, indiate zero or more ourenes

of the enlosed item.

+

Braes or brakets followed by a plus sign, e.g. [. . . ℄

+

, indiate one or more

ourenes of the enlosed item.

2 T3.0 Release Notes

j A vertial bar is used to separate alternative in a braed or braketed group, e.g.

fthing

1

j . . . j thing

n

g.

=) is read as \evaluates to" and is used to indiate the values of various expressions

in the language, e.g. (+ 1 2) =) 3.

� is read as \is equivalent to" and is used to indiate that one expression \is equivalent

to" another, i.e that they have the same meaning. For example, (+ 1 2) � (+ 2

1).

�! is read as \has hanged to" and is used to speify things that have hanged from

T2 to T3.

2.1 Margin Notes

Margin notes in this doument give information about the type of di�erene between

T3.0 and previous versions of T. There are seven ategories of di�erene:

Fixed indiates errors or bugs in previous releases that have been �xed.

Extended indiates that some additional funtionality has been added to the feature

thus marked.

Added indiates some additional funtionality that has been added to the language.

Experimental indiates new features of the language whih are inluded on an exper-

imental basis. Experimental features may be removed from the language at some

future release.

Changing indiates a hange in funtionality. The previous funtionality is supported

in the urrent release but will be removed in some future release. Any ode whih

relies on aspets of the language whih are hanging should be modi�ed as soon

as possible.

Changed indiates an inompatibility between T3.0 and previous versions of T. Code

whih uses a hanged feature will either not work in T3.0 or will not work in

previous versions of T.

Removed indiates funtionality that has been removed from the urrent release, and

is no longer supported. Any ode whih relies on removed features will no longer

work.

T3.0 Release Notes 3

3 L a m b d a

lambda-bindings no longer shadow syntax table entries in the standard ompiler. The�xed

standard-ompiler and orbit, the new optimizing ompiler, now have the same

evaluation semantis. This is onsistent with the manual (4

th

edition). In T2 t, the

old ompiler, omplied with the manual but the standard ompiler did not. Thus,

(let ((set list) (x 5)) (set x 8)) =) 8 not (5 8)

However, this doesn't mean that the lambda-binding has no e�et, but rather that the

binding is not reognized as suh when the name appears in the ar of a form. Thus,

(let ((set list) (x 5)) ((blok set) x 8)) =) (5 8)

This is not a �nal deision. This was the easiest semantis to implement, and it is

onsistent with the doumentation. In the future lambda bindings may shadow syntax.

4 A r g u m e n t E va lu a t i o n

The evaluation order of arguments in a proedure all is unde�ned. This is not a

language hange. In ode ompiled by both the standard-ompiler and t the

evaluation order of arguments in a ombination is left to right. orbit produes ode in

whih the evaluation order of arguments is unde�ned and not neessarily left to right.

Partiularly insidious bugs have resulted from let forms whose lauses ontain order

dependent side e�ets. Beause t and the standard ompiler evaluated the lauses

of let forms of this sort in sequential order they produed the expeted value. orbit

will usually not produe the expeted value. let* should be used to ensure sequential

evaluation order.

5 M u lt ip le Va lu e s

Version 3.0 of T supports multiple return values. This makes proedure all and return experimental

uniform, in the sense that a proedure an be invoked with zero or more values and an

return zero or more values.

(return fvalueg

�

) proedure

=) fvalueg

�

return returns its arguments as the value(s) of the urrent expression. In order to aess

4 T3.0 Release Notes

the value(s) of a return expression the value(s) must be bound to identi�ers using either

reeive or reeive-values.

For example,

(lambda () (return 1 2 3)) =) 1 2 3

where \=) 1 2 3" denotes evaluates to the three values 1, 2, and 3.

Like proedures, ontinuations have ertain expatations about the number of arguments

(values) that will be delivered to them. It is an error if more or fewer values are delivered

than expeted. There are only a small number of ways to reate ontinuations, thus one

only needs to understand these ases:

1. Impliit ontinuations, e.g. those reeiving an argument of a ombination or the

prediate of an IF, expet exatly one value, thus

(list (values 1) 2) => (1 2)

but

(list (values) 2) is an error

(list (values 1 2) 2) is an error

2. In a blok (begin), a ontinuation whih proeeds to exeute subsequent ommands

(e.g. the ontinuation to the all to FOO in (BLOCK (FOO) 2)) aepts an arbitrary

number of values, and disards all of them.

3. reeive expressions (and the subprimitive reeive-values reates a ontinuation whih

aepts whatever values are delivered to it, and passes them to a proedure; and

of ourse it is an error if this proedure is passed the wrong number of values.

return when invoked with no arguments returns to the alling proedure with no value.

Thus (return) will return to its aller with no value. It is an error to return no value

to a value-requiring position. For example,

(list 'a (return)) =) error

The idiom (return) is useful for proedures that return an unde�ned value and many

of the system proedures whose value(s) is unde�ned now return no value. However, the

proedure unde�ned-value may provide a more informative error message.

(reeive-values reeiver sender) proedure

=) value(s) of reeiver

T3.0 Release Notes 5

reeive-values returns the value of applying reeiver, a proedure of n arguments, to the

values returned by sender. sender is a thunk , a proedure of no arguments, whih

returns n values.

For example,

(reeive-values (lambda (x y) (list x y))

(lambda () (return 1 2))) =) (1 2)

(reeive (fidentg

�

) expression fbodyg

�

) syntax

=) value of body

In a reeive form the expression is evaluated in the urrent environment and the values

returned by the expression are bound to the orresponding identi�ers. body, whih

should be a lambda body, i.e. a sequene of one or more expressions, is evaluated in the

extended environment and the value(s) of the last expression in body is returned.

The expression

(reeive (a b) (return 1 2 3)

(list a b))

=) (1 2 3)

is equivalent to

(reeive-values (lambda (a b) (list a b))

(lambda () (return 1 2 3)))

=) (1 2 3)

Other forms have been extended in T3.0 to allow multiple return values:

(ath identi�er fbodyg

�

) syntax extended

=) value of body

The identi�er is bound to the ontinuation of the ath form, whih is now an n-ary

proedure. This means that ath forms an ruturn multiple values. The ontinuation

an be invoked only during the dynami extent of the ath form (see setion 21). In

T2 the ontinuation was a proedure of one argument. For example,

(ath x (list 1 (x 2 3) 4)) =) 2 3

(ret fvalueg

�

) proedure extended

=) fvalueg

�

Returns zero or more values as the value of the urrent read-eval-print loop.

6 T3.0 Release Notes

Note: Multiple values are implemented eÆiently. It may be more eÆient

to use multiple values than to pass ontinuations.

6 S id e E � e t s

6.1 LSET

The value of the lset speial form is unde�ned, and it is an error to use an lset form inhanging

a value requiring position. In version 3.0 lset will ontinue to return a value.

6.2 SET

The value of the set speial form is unde�ned, and it is an error to use a set form in ahanging

value requiring position. For example,

(set (p x y . . .) val)

is oneptually equivalent

(lambda ()

((setter p) x y . . . val)

(return))

where (return) invokes the alling ontinuation with no arguments. For more informa-

tion on return see setion 5. In version 3.0 set will ontinue to return the value being

assigned to the loation, but an error will be signalled in the future.

6.3 MODIFY

The value of the modify speial form is unde�ned, and it is an error to use a modify formhanging

in a value requiring position. In version 3.0 modify will ontinue to return a value.

7 C a n o n i a l B o o le a n Va lu e s

There is now a read syntax for anonial true and false: #F reads as the anonial falseadded

objet, and #T reads as the anonial true objet.

T3.0 Release Notes 7

(true? '#t) =) true

(false? (ar '(#f #t))) =) true

(list #f #t) is not de�ned, and is probably a syntax error, whereas (list '#f '#t)

evaluates to (() #T).

7.1 False and the Empty List

In T3.0 the anonial false value #F is not neessarily the same objet as the empty hanging

list, (). nil is bound to #F. For example,

(ond ((dr '(a)) 1)

(else 2))

may return 2 in a future release.

In T3.0 false and the empty list will ontinue to be the same objet, for ompatibility

with previous versions, but this will hange in a future release. As long as #F and ()

evaluate to the same objet null? and not will ontinue to be isomorphi; however, null?

should be used to test for the empty list, and not should be used to test for false.

It is now an error to take the ar or dr of the empty list, (). Again, for ompatibility hanging

with previous versions, in T3.0 the ar and dr of () will ontinue to evaluate to (), but

an error will be signalled in a future release.

It is an error to use () in an evaluated position. This error urrently generates a warning hanging

and treats () as '(), i.e. as if the empty list were self evaluating. An error will be signalled

in the future. Use '() for empty lists, nil or '#F for false values.

8 O b je t s

�xed

The objet system has been made more eÆient. join now works on proedures and

objets reated by the objet speial form. It does not yet work on strutures or primitive

objets suh as numbers and symbols.

8.1 Synonym

The synonym speial form has been removed. removed

8 T3.0 Release Notes

9 L o a le

The loale speial form has been removed from the language; however, make-loale andremoved

friends are still available.

We are working on a module system whih will eventually subsume the funtionality of

loale.

10 D e la r e

A new speial form delare has been added. Its syntax has not yet been released, butadded

users should be aware that it is a reserved word.

11 U n d e � n e d Va lu e s

Most proedures and speial forms that have unde�ned values now return either no valuehanging

or an expliit unde�ned value. See page 66 of the manual (4

th

edition). For example,

ond if no lause is seleted returns an unde�ned value.

12 S t r e a m s an d P o r t s

In T3.0 \streams" have be renamed to \ports". This was done for ompatibility withhanging

sheme and to avoid inompatibility with the use of the term stream in Struture and

Interpretation of Computer Programs by Abelson and Sussman.

In aordane with this naming onvention the following proedures have been renamed:

stream? �! port?

input-stream? �! input-port?

output-stream? �! output-port?

interative-stream? �! interative-port?

stream-read-table �! port-read-table

stream-�lename �! port-name

make-output-width-stream �! make-output-width-port

make-broadast-stream �! make-broadast-port

T3.0 Release Notes 9

13 W e a k S e t s

\Populations" have been renamed to \weak-sets". This hange was made in the belief hanging

that \weak-set" is a more intuitive name then \population". The old names are still

supported, but they will be removed in a future release.

make-population �! make-weak-set

population? �! weak-set?

add-to-population �! add-to-weak-set!

remove-from-population �! remove-from-weak-set!

population->list �! weak-set->list

walk-population �! walk-weak-set

In addition, two new proedures on weak-sets have been added.

(weak-set-member? objet weak-set) proedure added

=) boolean

weak-set-member? returns true if objet is a member of weak-set; otherwise, it returns

false.

(weak-set-empty? weak-set) proedure added

=) boolean

weak-set-empty? returns true if weak-set is empty; otherwise, it returns false.

14 S y n t a x

de�ne-maro has been removed from the language. Use de�ne-syntax, de�ne-loal-syntax, removed

and let-syntax instead.

The syntax of speial forms is heked more thoroughly than in previous releases. Some hanged

expressions that did not ause syntax errors in previous versions of T will ause errors

in T3.0. For example,

(lambda ()) =) syntax error

In previous versions of T this invalid expression would return the value (). In T3.0 it

generates an error.

10 T3.0 Release Notes

t-maro-de�nition-env has been eliminated. orbit evaluates syntax-desriptors in thehanged

env-for-syntax-de�nition assoiated with the syntax table from whih the desriptor was

obtained, e.g. (t-syntax-table).

14.1 Read Syntax

Read syntax proedures now take three arguments instead of two. The �rst two argu-hanged

ments are as before; the third is the read table from whih the proedure was fethed

(i.e. the one that was originally passed to read-objet). Read maros whih reursively

invoke the reader will want to pass that read table as the seond argument to read-objet.

Note: The hak in T2.8, in whih (set (read-table-entry . . .)

pro) would onvert pro from a two-argument proedure to a

three-argument proedure whih ignores its third argument, has been

removed.

14.1.1 Charater Read Syntax

The #[Char . . . ℄ read syntax for haraters has been hanged to #[Asii . . . ℄.hanging

#[Char . . . ℄ �! #[Asii . . . ℄

14.2 Syntax Desriptors

The evaluation semantis have been extended to allow the evaluation of forms whoseextended

ar's are syntax desriptors. Suh a form is interpreted just as if it were a form whose

ar was a symbol whose syntax table entry was the syntax desriptor. For example,

(define-loal-syntax (foo x)

`(,(syntax-table-entry standard-syntax-table 'lambda) () ,x))

((foo 5)) =) 5

This feature allows ontrol over binding time for reserved words. For example, a syntax

desriptor suh as foo, above, an be sure that its expansion will be treated as an

expression that evaluates to a losure, regardless of what the syntax table entry for the

symbol lambda is when the expansion is evaluated or otherwise analyzed.

T3.0 Release Notes 11

15 Q u a s iq u o t e

bakquote has been renamed to quasiquote, and the bakquote harater, � , now reads hanged

as quasiquote. The semantis of nested quasiquote have hanged to onform with the

Revised

3

Report on the Algorithmi Language Sheme. This hange should not ause

you problems. If you need a more thorough explanation of this hange, ontat the

implementors.

quasiquote now works on vetors. Thus, extended

`#(1 2 ,(+ 1 2)) =) #(1 2 3)

16 S t r u t u r e s

Strutures an now be de�ned with methods. extended

(de�ne-struture-type typename fomponentsg

+

fmethodsg

�

) syntax

=) stype

typename and omponents are handled as before. methods is an optional list of method

lauses. For example,

(define-struture-type employee

name

age

salary

(((human? self) t)

((print self stream)

(format stream "#fEmployee (~a) ~ag"

(objet-hash self)

(employee-name self)))))

The methods in the methods lauses annot referene the omponents diretly. They

must use the standard struture aessors. For example, in the print method above the

name omponent of the employee struture must be aessed as (employee-name self)

not as name.

Strutures annot yet be joined to other objets.

12 T3.0 Release Notes

17 M is e l la n e o u s

17.1 Numbers

(rational? obj) proedureadded

=) boolean

rational? returns true if obj is an integer or ratio; otherwise, it returns false.

(trunatenumber) proedureadded

=) boolean

trunate returns the integer of maximal absolute value not larger than the absolute value

of number with the same sign as number. trunate trunates its argument toward zero.

17.2 Global Variab les

The *. . . * onvention for global variables has been hanged. *. . . * now indiates ahanging

global, mutable variable, i.e. bound by lset. The *'s have been removed from global

onstants. Thus the following name hanges have been made:

standard-read-table �! standard-read-table

vanilla-read-table �! vanilla-read-table

standard-syntax-table �! standard-syntax-table

eof �! eof

repl-wont-print �! repl-wont-print

number-of-har-odes �! number-of-har-odes

nothing-read �! nothing-read

standard-env �! standard-env

t-implementation-env �! t-implementation-env

srath-env �! user-env

t-env �! orbit-env

t-version-number �! t-version-number

17.3 Misellaneous Name Changes

The following names have been hanged in T3.0:hanging

T3.0 Release Notes 13

div �! quotient

div2 �! quotient&remainder

min-�xnum �! most-negative-�xnum

max-�xnum �! most-positive-�xnum

fxrem �! fx-rem

om�le �! ompile-�le

17.4 Command Line

The global variable *ommand-line* has been replaed by ommand-line whih is a nullary hanged

proedure that returns the ommand line that was used to invoke the system. The value

returned by ommand-line is a list of strings. Thus,

ommand-line � (ommand-line)

17.5 Mutable Handlers

The unreleased feature of T2 that allowed handlers for strutures to be mutated no hanged

longer exists. Any ode using handle-stype, get-method, set-method, et. will no longer

work, but join now works eÆiently; see setion 8.

17.6 Prop erty Lists

In T3.0 symbols no longer have property lists. Tables, see 19, provide a superset of the hanged

funtionality of property lists and do not involve global state as do property lists.

17.7 Symbol Tables

Symbol tables as de�ned in T2 have been removed from the language. They have been hanged

replaed by a generalized hash table faility; see setion 19. The following proedures

are now defunt:

make-symbol

the-symbol-table

intern

really-intern

interned

interned?

walk-symbol-table

14 T3.0 Release Notes

17.8 Any and Every

any, any?, anydr, anydr?, every, every?, everydr, everydr? now work as advertised in�xed

the manual (4

th

edition).

18 O t h e r C h a n g e s

(enfore prediate value) proedureadded

=) value

enfore returns value whih must answer true to prediate. enfore is used to ensure that

value is of type prediate. If enfore signals an error and enters a breakpoint, then a new

value an be returned using ret. For example,

> (let ((a (enfore fixnum? 'a))) (+ a 1))

** Error: (ENFORCE FIXNUM? A) failed in (anonymous)

>> (ret 1)

2

>

(generate-symbolpre�x) proedure�xed

=) symbol

generate-symbol now ensures that the symbol returned is unique, in the sense that it

was not previously interned , during the urrent session. Note, however, that symbols

generated using generate-symbol whih are written to a �le during one session and then

read during another session are not guaranteed to be unique.

^ has been removed.hanged

replaes **.hanged

++ has been removed.hanged

19 Ta b le s

T3.0 ontains generalized hash tables. A table assoiates a key with a value. make-experimental

hash-table is the most general way to make a hash table. In addition, the most ommon

types of tables have been prede�ned.

T3.0 Release Notes 15

Note: Tables should be used in plae of property lists.

(make-hash-table type? hash omparator g? id) proedure

=) table

make-hash-table reates a table whih assoiates keys to values. Any objet may be a

key or a value.

type? | is a prediate. All keys in the table must answer true to the prediate type?.

hash | is a proedure from keys to �xnums whih is used to hash the table entries.

omparator | is an equality prediate on keys.

g? | is a boolean value whih spei�es whether the hash proedure is dependent on

the memory loation(s) oupied by the objet, i.e. whether or not the table must

be rehashed after a garbage olletion.

id | is an identi�er used by the print method of the table.

(hash-table?objet) prediate

=) boolean

hash-table returns true if the objet is a hash table.

(table-entrytable key) settable

=) objet

table-entry returns the objet assoiated with the key in the table if there is an entry for

key, otherwise returns false.

(walk-table pro table) proedure

=) unde�ned

walk-table invokes proedure, a proedure of two arguments, on eah key, value assoia-

tion in the table. Note that it is an error to perform any operations on the table while

walking it.

The following ommon table types have been prede�ned as follows:

16 T3.0 Release Notes

(make-table . id) proedure

=) table

make-table reates a table in whih any objet an be a key and eqv? is used as the

equality prediate on keys.

(table? objet) proedure

=) boolean

table? returns true if the objet is an eq? table.

(make-string-table . id) proedure

=) table

make-string-table reates a table in whih the keys must be strings and string-equal? is

used as the equality prediate on keys.

(string-table? objet) proedure

=) boolean

string-table? returns true if the objet is a string-table.

(make-symbol-table . id) proedure

=) symbol-table

make-symbol-table reates a table in whih the keys must be symbols and eq? is used as

the equality prediate on keys.

(symbol-table? objet) proedure

=) boolean

symbol-table? returns true if the objet is a symbol-table.

20 R a n d o m In t e g e r s

(make-randomseed) proedureexperimental

T3.0 Release Notes 17

=) thunk

make-random takes a seed whih is a �xnum and returns a thunk . The thunk returns

a new pseudo-random integer , x, in the range most-negative-�xnum <= x <= most-

positive-�xnum eah time it is invoked.

21 a l l -w i t h - u r r e n t - o n t in u a t io n

(all-with-urrent-ontinuationpro) proedure experimental

=) value-of-pro

The proedure all-with-urrent-ontinuation pakages up the urrent ontinuation as an

\esape proedure" and passes it as an argument to proedure. proedure must be a

proedure of one argument. The esape proedure is an n-ary proedure, whih if later

invoked with zero or more arguments, will ignore whatever ontinuation is in e�et at

that later time and will instead pass the arguments to whatever ontinuation was in

e�et at the time the esape proedure was reated.

The esape proedure reated by all-with-urrent-ontinuation has unlimited extent just

like any other proedure. It may be stored in variables or data strutures and may be

alled as many times as desired. For a more thorough explanation onsult the Revised

3

Report on the Algorithmi Language Sheme.

22 In p u t an d O u t p u t

(maybe-read-harport) proedure experimental

=) harater or false

maybe-read-har when invoked on a port will return the next harater if one is available;

otherwise, it will return immediately with a value of false.

(har-ready?port) proedure experimental

=) boolean

har-ready? returns true if a harater is available for input; otherwise, it returns false.

18 T3.0 Release Notes

23 S h em e

sheme is an embedded language in T3. For more information on Sheme see theadded

Revised

3

Report on the Algorithmi Language Sheme. There are two ways to invoke

the Sheme interpreter:

(sheme-breakpoint) proedure

=) unde�ned

sheme-breakpoint enters a Sheme read-eval-print-loop in the Sheme environment. This

is similar to the T proedure breakpoint.

(sheme-reset) proedure

=) unde�ned

sheme-reset enters a top level Sheme read-eval-print-loop in the Sheme environment.

This is similar to doing reset in the standard-env, with the exeption that the read-eval-

print-loop is an evaluator for Sheme.

24 T h e In i t ia l L o a le s

When the T system starts up the loale struture looks as follows:extended

<root>

/ | \

/ | \

/ | \

/ | \

/ | \

t-implementation-env standard-env sheme-env

/ | \

/ | \

/ | \

user-env orbit-env sheme-internal-env

T3.0 Release Notes 19

<root> The <root> loale is the oneptual root of the loale tree. It does not atually

exist. The <root> loale is empty, it ontains no variable bindings.

t-implementation-env The t-implementation-env is the environment whih ontains

the system internals.

standard-env The standard-env is the environment de�ned by the T manual.

user-env The user-env is the default environment for the read-eval-print-loop on system

startup.

orbit-env The orbit-env is the environment whih ontains the internals of the orbit

ompiler.

sheme-internal-env The sheme-internal-env ontains the system internals for the

Sheme environment.

sheme-env The sheme-env is the environment de�ned by Revised

3

Report on the Al-

gorithmi Language Sheme.

25 Fo r e ig n P r o e d u r e C a l l s

The interfae between T3 and the loal operating system is the de�ne-foreign speial

form:

(de�ne-foreign T-name (foreign-name parameters

+

) return-type) syntax

=) unde�ned

20 T3.0 Release Notes

de�ne-foreign de�nes a foreign proedure, i.e. a T proedure whih will all a proedure

de�ned by the operating system or in another language.

T-name is the name of the T proedure being de�ned.

foreign-name is the name of the foreign proedure to whih the T-name orresponds.

parameters spei�es the representation of the parameters to the foreign proedure or

funtion.

return-type indiates the representation of the value returned by the foreign proedure.

parameter �! (parameter-type foreign-type [parameter-name℄)

parameter-type �! f in | out | in/out | var | ignore g

foreign-type �! f rep/integer |

rep/integer-8-s |

rep/integer-8-u |

rep/integer-16-s |

rep/integer-16-u |

rep/value |

rep/extend |

rep/extend-pointer |

rep/string |

rep/string-pointer g

parameter-name �! symbol used for identifiation

return-type �! Aegis: f foreign-type | ignore | rep/address g

Unix: f foreign-type | ignore g

For example, on the Apollo a proedure to do blok reads from a stream would be

de�ned as follows:

(define-foreign aegis-read

(stream $get buf (in rep/integer-16-u stream-id)

(in rep/string bufptr)

(in rep/integer buflen)

(ignore rep/integer retptr)

(out rep/integer retlen)

(ignore rep/extend seek-key)

(out rep/integer status))

ignore)

T3.0 Release Notes 21

The following ode will use aegis-read to read in a string from standard input:

(let ((stream 0)

(buf (make-string 128)))

(reeive (len status) (aegis-read stream buf 128 nil nil nil nil)

(ond ((= 0 status)

(set (string-length buf) len)

len)

(error ...))))

On a Unix mahine a similar proedure would be de�ned as,

(define-foreign unix-read-extend (read (in rep/integer)

(in rep/string)

(in rep/integer))

rep/integer)

To read a string from standard input on Unix the T ode would look something like:

22 T3.0 Release Notes

(let ((buf (make-string 128)))

(reeive (len status) (unix-read 0 buf 128)

(ond ((> 0 status)

(set (string-length buf) len)

len)

(error ...))))

25.1 Foreign Typ e Sp ei�ation

The foreign-type tells the ompiler how to interpret a T data type in order to pass it to

the foreign all. The general ategories of Pasal data types are numeri, string, reord,

enumerated, set of.

Pasal Type T3 Type Foreign Type Spe

Numeri

integer8 �xnum rep/integer-8-s

binteger �xnum rep/integer-8-u

integer16 �xnum rep/integer-16-s

pinteger �xnum rep/integer-16-u

integer �xnum rep/integer

linteger �xnum rep/integer

real unimplemented

double onum rep/extend

String

string string rep/string

string text rep/extend

univ pointer string rep/string-pointer

univ pointer text rep/extend-pointer

Reord

reord extend rep/extend

Misellaneous

har har rep/har

boolean boolean rep/integer-8-s

Beware that if a T string is being used as an out parameter the o�set �eld of the string

must be 0 (the string must never have been hdr!'ed).

Reord strutures are represented by byte-vetors of the appropriate size.

25.2 Pasal (Apollo) Enumerated Typ es

Pasal enumerated types are de�ned using the de�ne-enumerated speial form:

T3.0 Release Notes 23

(de�ne-enumerated type-name felementg

�

) syntax

=) unde�ned

where type-name is just for identi�ation, and the elements are the enumerated types.

For example,

(define-enumerated ios $reate mode t

ios $no pre exist mode

ios $preserve mode

ios $rereate mode

ios $trunate mode

ios $make bakup mode

ios $lo name only mode

)

The foreign proedure is alled with the enumerated type name just as in Pasal.

25.3 Pasal Sets (Apollo)

The Pasal type set-of is de�ned using the de�ne-set-of speial form:

(de�ne-set-of type-name felementg

�

) syntax

=) unde�ned

where, again, type-name is just for identi�ation, and the elements are the names of the

set members. For example,

24 T3.0 Release Notes

(define-set-of ios $put get opts t

ios $ond opt

ios $preview opt

ios $partial reord opt

ios $no re bndry opt

)

25.4 Returned Values and Out Param eters

For languages whih have output parameters, e.g. Pasal, multiple values are returned.

The �rst value is the return-value of the foreign proedure, unless it is of return-type

ignore, followed by the out parameters. Thus a all to the T proedure aegis-read,

de�ned above, would return two values: retlen and status. For a Pasal proedure the

return spe will always be ignore. The argument to a foreign proedure should usually

be of type ignore if it is an out parameter to the foreign proedure that is bigger than a

longword. Also, the value of any out parameters whih are not needed an be spei�ed

as ignore.

Pasal funtions whih return addresses must have return-type of type rep/address. If

this value is passed to another foreign all it should be with rep/integer.

de�ne-foreign does not alloate storage for out parameters. This means that you must

alloate your own objet and pass it to the foreign proedure even if it is only an out

parameter. If it is an out parameter whih is other than an integer then its foreign-type

should be ignore and the variable passed in should be used to referene the parameter.

